An Even Faster Solver for General Systems of Equations
نویسندگان
چکیده
We present a new algorithm which computes a partial approximate solution for a system of equations. It is local in that it considers as few variables as necessary in order to compute the values of those variables we are interested in, it is generic in that it makes no assumptions on the application domain, and it is general in that the algorithm does not depend on any speciic properties of right-hand sides of equations. For instance, monotonicity is not required. However, in case the right-hand sides satisfy some weak monotonicity property, our algorithm returns the (uniquely deened) least solution. The algorithm meets the best known theoretical worstcase complexity of similar algorithms. For the application of analyzing logic languages, it also gives the best practical results on most of our real world benchmark programs.
منابع مشابه
Printed Copies: an Even Faster Solver for General Systems of Equations an Even Faster Solver for General Systems of Equations
Electronic copies of technical reports are available: Via FTP: URL ftp://ftp.informatik.uni-trier.de/pub/Users-Root/reports Via WWW: URL http://www.informatik.uni-trier.de/Reports/Current.html Via email: Send a mail to [email protected], subject ’HELP’, for detailed instructions Printed copies: Trierer Forschungsberichte Fachbereich IV Mathematik / Informatik Universitat Trier ..
متن کاملA preconditioned solver for sharp resolution of multiphase flows at all Mach numbers
A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...
متن کاملA randomized Kaczmarz algorithm with exponential convergence
The Kaczmarz method for solving linear systems of equations is an iterative algorithm that has found many applications ranging from computer tomography to digital signal processing. Despite the popularity of this method, useful theoretical estimates for its rate of convergence are still scarce. We introduce a randomized version of the Kaczmarz method for consistent, overdetermined linear system...
متن کاملA Randomized Solver for Linear Systems with Exponential Convergence
The Kaczmarz method for solving linear systems of equations Ax = b is an iterative algorithm that has found many applications ranging from computer tomography to digital signal processing. Despite the popularity of this method, useful theoretical estimates for its rate of convergence are still scarce. We introduce a randomized version of the Kaczmarz method for overdetermined linear systems and...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996